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ABSTRACT

A study was made of Nual Input Dzscribing Functions (DIDF; for non-
linear elements with a view toward the synthesis problem where the charac-
teristics of the DIDF are specified a priori. The studv included a literature
survey and an analycical investigation of the DIDF.

Imprcved methods for calculating DIDF's were sought. The problem of
defining the DIDF in such a way that it is valid for multivalued nonlinear
elements was also considered and one method of solution is proposed. The
effect or changes in the secondary signal waveform on the DIDF for noniinear
elements was also investigated.
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CHAPTER I

INTRODUCTION

A typical nonlinear element N, as encountered in automatic control
applications, may be characterized mathematicaily as a nonlinear operator
which acts on a scalar input signal e and ~roduces a scaiar output signal
y = N(e) where, ingeneral, N(e) is anonlinear function. Iamanycases, N(e) is
a multiple or even infinitely valued "function" and may possess a numper of
simple jump discontinuities. Hereafter the function N(e) is referred to as the
"characteristic" of the nonlinear element N.

One method commonly used to analyze electrical networks and feedback
control systems containing such nonlinear elements is the Method of Describing
Functions (DF). This method coiisists of a linearizing process whereby the
nonlinear operator N(e) is repiaced by a {nossibly compiex} parameier
dependent linear operator called the describing funztion. The DF method
originated in the sinusoidal analyses of feedback control systems containing
nonlinear elements and was therefore originally developed only for sinusoidal
inputs. The DF for that case can be exglained by Figure 1.1. The constant
(possibly complex) gain f((A) is chosen so that the cutput A, sin (wt + ¢;) of

the linearized representation is precisely equal to the fundamental component
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of the actual output y(t) of the nonlinear element, the latter being determined
by an ordinary Fourier Series analysis of y(t). The remainder,
R(t) = Ay sin 2wt + B, cos 2wt + ..., of the actual output y(t) is, in effect,

neglected.

y(t) = A] sin wt + B] cos wt

i A i +....
+ A2 sin 2wt + 82 cos 2wt + Ay sin 3wt

e = A sin wt

N(e)

Y

(a) Actual Output of Nonlinear Flement N

A sin ot N ?(A) A] sin (wt + ) = A] .anwt B] cos wt

Y

(b) Linearized Representation of Nonlinear Element N

Figure 1.1. Replacement of the Original Nonlinear Element N by Its DF ﬁ(A)

Thus, the approximation of N by its DF is usefu! primarily in applica-
tions where the signal y(t) subsequently passes through a filtering process
such that the contribution of R(t) at the filter output is negligible. Ir fact, it
was situations of this type which prompted the original applications of the DF.
As the filtering action more closely approximates that of a perfect low pass
filter [low pass with respect to the fundamental frequency w of y(t) ], the DF
approximation of N becomes more exact. It is remarked that the ordinary DF
analysis is valid only if the nonlinear element output y(t) has zero average

value aud the fundamental component of y(t) has the same frequency w as
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the input e(t} = A sin wt.

The intuitive (original} approach to the DF analysis described above

leads one to the following definition of the paramcter dependent gain }A{( A)
Ra) =2t Brag gk (1.1)

where f((A) is defired in complex variabie notation (j = ~/-1). The terms A
and B, are the magnitudes of the fundamental in-phase and quadrature compo-
nents of the output y(t).

The DF describec above can also be derived by means of 2 seemingly
different approach to the problemr. In this approach the unwante¢ harmonics
R(tj are minimized in the root-mean-squared (RMS) sense. In other words,
one seeks the function k(A) which gives the minimum RMS value of R(t) in

Figure 1. 2.

e = A sin wt N(e) K (A) A sin wt + R(1)

Y

Figure 1.2. Actual Input and Output Signals of Nonlinear Element
with Characteristic N(e)

The RMS value of R(t) is given by

1 271’ a 1/
= Eﬂ—f [N(A sin wt) - K A sin wt]2dwt} /2
0

27 1
_ 1 . 2 . - 2 !/2
{2W0f [N(A sin wt) - K A sinot - K A cos wt]"duwt{’? .

(1.2)

K]
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It is not difficult to show that the minimum value of R results when

2r
o 1
_ 1 . . L
Kq 7rAofN(A sin wt) sin wt dwt (1.3)
. 1 2T
K, =;A—f N(A sin wt)cos wt dwt . (1.4)
o

The result {Equations (1.3) and (1.4)] gives precisely the same DF
previously described and illustrated in Figure 1.1, However, the derivaticn
of DF's by minimization of the RMS value of R(t) provides a convenient means
for accommodating more general (non-sinusoidal) periodic inputs to N.

The conventional Dual Input Describing Function (DIDF) is defined for
an input e which is the sum of two (possibly independent) components € where
the e, are typically chosen as constant, sinusoidal, or random noise signals.

In this case, a DIDF or "equivalent linear gain' can be defined for each input
component ei( t). Figure 1.3 illustrates how a nonlinear element with two sine
wave input components can be replaced by two DIDF's.

Tt is useful at this point to introduce, in a simplified way, the underlying
principle of the DIDF for a nonlinear element with two independent input compo-
nents. A more complete mathematical description of the DIDF and one means
of deriving it for deterministic input components is given in Chapter II.

If the primary component of the input to the nonlinear element is denoted
by e, and the secondary input component is e,, the DIDF for the component e,
is defined as the coefficient of the term ey in the output y(t), where y(t) is
written in the form

y(t) = Kie (t) + R(t) (1. 5)




i

A sin ot Ay sin (ot + 'l) + Bl sin (Pt + yl)
+ CI sin (wt - pt + ll)
+
s ‘N(e)
+ | B A2 sin (2wt + ,2) + Bz sin (2pt + y2)
B sin Ef to:ee o
(a) Original Representation
A si
sin wt /.'(\A (A,B)
+ ) AI sin (wt+g])+81 sia (ﬂt*yl)
+
B sin pt
sin B f(\B (B,A)

(b) Equivalent Representation

Figure 1.5. Example Showing Nonlinear Element Replaced
by Its DIDF

and R(t) does not contain terms linear in e,(t). Since superposition does not

hold, the presence of e, has the effect of "altering" the value of ﬁi, which in

turn is chosen so that R(t) is minimized in the RMS sense. In general the out -

p

put y(t} of the nonlinear element consists of terms involving e, ezq, and

eipe?q where p and q are integers.

The observation that the characteristic N(e) of a nonlinear element is,
in effect, "altered" by addition of a secondary high frequency sinusoidal signal
€y(t) to the primary component e,(t) was observed some tim;e ago. In 1945

McColl [1] noted the apparent linearizing effect of the "extra oscillation' on a

relay control system. He also mentioned the idea of replacing the original
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relay element with a new "effectively linear' element and, by so doing, avoid-
ing all explicit mention of the extra oscillation. McColl attributes this latter
idea to Lozier [2]. These two ideas are the basic notions of ithe DIDF
technique; they actually had their beginning prior to any published work on the
"single input” DF.

Some of the earliest studies of describing function techniques were
conducted independently by Goldfarb [3], Tustin [4], and Kochenburger [5].
These early researchers were evidently inspired by the so-called inethod of
"harmonic balance' developed somewhat earlier by Kryloff and Bogoliuboff [6].
The success and wide acceptance of both the DF and DIDF can be attributed to
the good low pass filtering characteristics of most practical controlled plants.
This is true even though the definition of both the DF and the DIDF depends only
upon the nonlinear element and input signals.

The use of a triangle wave secondary component e,(t) to provide
"precisely linear" signal amplification, in the sense of the DIDF for carrier-
controlled relay servos, was probably first proposed by Lozier [2]. The basic
concepts involved in the DIDF for two sinusoidal components, where the ratio
of frequencies is an irrational number, were clearly outlined by Lozier. West,
Douce, and Livesly [7] first introduced the term ""Dual Input Describing Func-
tion" and made a major contribution toward the development of practical com-
putational procedvres. However, the DIDF of West et al. is valid only for two
sinusoidal components where the irequency ratio of the two sinusoids is a
rational number. In practice this frequency ratio is usually taken as an integer

or the reciprocal of an integer. The DIDF of West et al. is very cumbersome
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because of the many parameters involved. In a later study, Oldenburger [8]
noted the stabilizing effect brought about by the addition of a high frequency
sinusoidal secondary signal into the nonlinear element iuput in certain unstable
nonlinear feedback control systems. Somriervil:- and Atherton [9] proposed

a very appealing approximate method for calculating multiple input describing
functions or equivalent gains K which are valid for several input components
with different waveforms including dc, sinusoidal, and gaussian noise. When
the input consists of only two independent components, they propose and outiine
a method for obtaining the DIDF by a two-stage evaluation process in which the
first step involves the calculation of an effective or modified nonlinear element.
Oldenburger and Boyer [10] utilized a modified nonlinewr element approach to
derive many useful DIDF curves for the restricted case of two sinusoidal com-
ponents where the frequency of the secondary component is high compared to
the primary component. The modified nonlinear element concept was later
shown, by Gibson and Sridhar [11], to give exact answers (subject of course to
the accuracy of computational methods and equipment) for two sire wave com-
ponents where the frequency ratio is an irrational number. The DIDF consid-
ered by Gibson and Sridhar was derived using the theory of random functions
and is valid only for single valued nonlinear elements. Much earlier, however,
Bennett [12], and later Kalb and Bennett [13], used a double Fourier Series
expansion of a nonlinear element output in analyzing modulation products.

Later Amsler and Gorozdos [14] used the meihod of Bennett and Kalb in the

analysis of bistable control systems snd derived what was later called the
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DDIF for a relay with two cinucoidal input components with irrational fre-
quency ratio.

Other investigators such as Sridhar and Oldenburger [15] and
Atherton and Turnbull [16] have proposed alternative approaches to the DIDF
based upon statistical methods. Gelb and Vander Velde [17] make use of a
simpler dc equivalent gain as an approximation to the DIDF for two sinusoidal
components in the anzlysis of limit cycling control systems. In a recent book,
Gelb and Vander Velde [18] fave applied the integral representation of non-
linear elements used by Gibscn and Sridhar to the calculation of a DIDF for
two sinusoidal input components (two-sinusoid input describing function or
TSIDF). However, in their book Gelb and Vander Velde use purely determin-
istic arguments rather than the theory of random fuactions. In this same book
Gelb and Vander Velde also disclose a very appealing power series TSIDF cal-
culation for odd nonlinear elements with input sinusoids whose frequency ratio
is irrational. This power series of the TSIDF is easily generated from an
algebraic form of the ordinary DF.

All of the methods discussed above, with the exception of the DIDF of
West, Douce, and Livesly [7] apply only to single valued nonlinear elements.
Recently, Mahalanabis and Nath [19-21] have proposed a method of calculating
the DIDF which, they assert, holds for multivalued nonlinear elements with
multiple inputs. However, Atherton [22] has subsequently pointed out that this
proposed method is valid only when the nonlineaf element may be described by
the function f(e,e), where e is the input to the nonlinear element [23]. Often

a function f(e,€), although incorrectly describing the characteristic of a given
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multivalued nonlinear element, may be successfully employed when the
derivative of the input signal does not change signs within the hysteresis or
multivalued region. This condition cannot, in general, be guaranteed for two
independent input components regardless of any stipulations on the amplitude of
these signals. Consequently, the method proposed by Mahalanabis and Nath

is incorrect for two input components even when the restriction i.s added that
the difference in amplitudes of the two compcnents must be greater than the
hysteresis width. For this reason, many subsequent articles [24-28] relating
to such a method are incorrect. Miohan and Krishma [29] have correctly used
this approach to find DIDF's for some n.ultivalued nonlinear elements for which
the function f(e,€) is an exact representation. This rather special class of
nonlinear elements excludes many of the important multivalued nonlinear ele-
ments encountered in practice, however.

Since frequencies and the frequency ratio of the two periodic components
of the input to a nonlinear element are mentioned quite often in this report,
standard symbols will be adopted for these terms. Hereafter the frequency of
the primary input component (usually a sine wave) will be defined as « and the
fundamental frequency of the deterministic secondary input component will be
defined as 2. The term *'frequency ratio" will refer to the ratio = B/w.

One may successfully apply the modified nonlinear element metked of
determining the DIDF for multivalued nonlinear elements when certain restric-
tions are placed on the input components. Atherton and Turnbuii [16] have
demonstrated that gocd approximate answers may be obtained when f/w > 1

<

or when f/w <« 1. The first case (B/w > 1) requires only a straightforward
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application of the method, whereas the latter case (2/. « 1) requires a slight
modification of the method as originally outlined by Sommerville and
Atherton [9].

Cook [30] has given the DIDF of some maltivalued nonlinear elements
for both sinusoidal and statistical secondary input components by using the
modified nonlinear element method. Cook considered only the more straight-
forward application of the modified ncnlinear element nizthod where Rl » 1.

In another recent paper 131}, Mahalanabis and O'denburger have
proposed an approximate miethod of calculating the DIDF of a maltivalued non-
linear element by the use of statistical methods. They assert that the fre-
quency of the secondary signal component may be either higher eor lower

(R/w irrational) than that of the regular (primary) input comporent. The
latter statement conflicts with the findings of this study and will be discussed
iﬂ more detail in Chapter II.

Tothe author's knowledge, the papers cited above include the major part of
the published original work on the DIDF's of multivalued nonlinear elements. Only
Mahalanabis and Oldenburger [31] assert that their proposed DIDF applies gener-
ally to multivalued nonlinear elements and their DIDF appears tobe incorrect. Even
the restrictive case where the nonlinear element input consists of two sinusoidal
components with irrational frequency ratio 8/ w has not been satisfactorily solved.

Scme of the studies cited above were concerned with stability consid-
erations and others were concerned with the signal transmission properties of
noalinear elements. The primary ccncern of this study is the manner in which

the effective nonlinear characteristic is altered in the presence of various

10

§
3
;

PRI L CLPNR e T T

SR

e,




R T T R et G Sk Loty iGN o s

"

R

T T S S S

|
¥

deterministic secondary signals. The possibility of changing the apparent gain
characteristics of a nonlinear element by injection of various "stabilizing”
signal waveforms has been considered by other authors {16,32,33]. Also of
concern is an effective method of dea’'ing with multivalued nonlinear elements
without the severe restrictions of the modified nonlinear elemeni concept.
Since it is known that the injection of secondary signals of Jdifferent
waveforms at the input of a nonlinear element resuits in different DIDF's, a
related synthesis problem may be pased. This synthesis problem is stated as
follows: Given a nonlinesr etement with characteristic N(e), find a waveform
(if one exists) of a periodic seccndary input componert e,(t) which wili result
in a specified DIDF. With added quzlifications, this problem will be defined as
the inverse DIDF problein. Gibson, Hill, Ibrahim, and di Tada {34] have
proposed an inverse DF problem where it is desired to find the nonlinear
characteristic which has a specified describing function. Although the inverse
DIDF problem is not a logical extension of the inverse DF problem defined by
Gibson et al., it is perhaps a more practical one for the two-input component
case. It is with this inverse DIDF problem that part of this report is con-
cerned. An unsuccessful attempt was made to find a general solution to this
problem. As will be seen, specific classes of nonlinear elements iend them-
selves to relatively simple solutions. In the absence of a general approach to
the inverse DIDF problem, counsiderable use could be made of curves showing
the DIDF's of the nonlinear element for several specific secondary signal wave-

forms. The derivation of a catalog of several such DIDF's and the development
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of new and shorter methods for obtaining them comprises another contribution
of this report. The specific secondary signals considered are the sine wave,
triangle wave, and square wave.
In summary, it is felt that this report makes some contribution in the
following specific areas:
a. The bistorical aspects of the DIDF
b. The inverse DIDF problem
c. A new method of obtaining the DIDF (The proposed method holds
for a broad class of multivalued nonlinear elements and simplifies
to a very compact form for single valued nonlinear
elements with sinusoidal input comnonents. }

d. Calculation of DIDF's for several specific secondary signals.
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CHAPTER II

METHODS OF OBTAINING THE DIDF FOR DETERMINISTIC INPUTS

R KA AT LGRS LI S AN WRSTHFR L MR N sl

2.1 The DIDF of Wes?#, Douce, and Livesly

The most general DIDF for the case in which the input to 2 single valued
nonlinear eleinent is the sum of two sine waves, e = A sin (wt + ¢)
+ B sin (nwt + ¥), is giver by the expression

2n

A 1

K(A,B,un,¢,¥) = ;Xf NJA sin fwt + ¢) + B sin (awt + ¥)Isin (wt + ¢)dwt.
o

(2.1)

Such a DIDF! has iive variables, A, B, n, ¢, and ¢, and is there somewhat

complicated to use in practical problems. West, Douce, and Livesly {7]

AL TSR

developed a simplification of the DIDF given y Equation (2.1) by assuming the
parameter n to be a rational number. Tn fact the investigaticns of West et af. i

led them to consider the even more restrictive casz where n is an integer or

'Hereafter, the ovder of the indicated parameters in the DIDF
ﬁ(A, B,a,bh,n,¢,...) has implied meaning. The first parameter A is the
amplituce of the primary input signal for which the DIDF is derived. The
second, B, is the peak value of the secondary iuput signal. Thken follow the
parameters a, b, ¢, etc., associated with the nonlinearity itself. The fourth
group (n, ¢,¥,etc.) consists of the frequency ratio and phase angles associated
with the two input signals. These comments also apply to the modified non-
linearity N(A,B,a,b,c,n,...).

13
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the reciprocal of an integer. With this added restriction, the inclusion of two
phase shift quantities ¢ and { becomes redundant ai.d one of those parameters
was eliminated. in this way, the simplified DIDF of West, Douce, and Livesly
was obtained in the form

Zn

» 1

K(A,B,n,¢) = = [ N[Asin (wt + ¢) + B sin nwt] sin (wt + ¢)dot .
o}

(2.2)
when N(e) is single valued. The four parameters A, B, n, and ¢ in the DIDF
of West, Douce, and Livasly still require a very large amocunt of data to give a
complete represeniation. For this reason, and because of the restrictions on
n, its use has been limitcd primarily to investigations of stability, subharmonic
(superharmonic) oscillations, and jump phenomena in nonlinear systems. As
peinted out by West et al., when N (¢) is adequately described by a low order
polynomial the DIDF is most easily found by a direct expansion to obtain the
terms inthe output with frequency w. Of course, the direct expansion technique
works equally well when the frequency ratios of the input sinusoidal components

are irrational,

2.2 The Modified Nonlinear Element Concept

The: concept of the equivalent nonlinear etement or the modified non-
linear element probably originated witbh Nikiforuk and West [35]. Howevér,
their modified, normalized, input-output characteristic was defined only for a
sinusoidal inpnt when noise was added to this input. Sommerville and
Atherton [Y] extended this concept to give a more meaningful "effective

nonlinear element." This effective nonlinear element canie about as a result

14
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of the two-stage evaluation of the equivalent gain of a nonlinear element with

respect to a primary signal in the presence of several other deterministic or

random input components, The restriction was imposed that the cros- correla-

tion function of any two of the random input components must be zero and the

frequency ratio for periodic input components must be irrational.

is shown diagramatically in Figure 2.1.

The process

INPUTS
x
*—
\{ (xl Y, z)
z o ° N(e) |—=°
1
. 4
K +
> Ny ~._ .

K y\ R(lelz)
K

Vo (xl Y, 1)=

A, A A
Kx+KytKz
x y z

Figure 2.1. Diagram Showing the Error Term R (x,y,2)
and Equivalent Representation of a Three-Input

Nonlinear Element Where R(x,y,z) Is Neglected
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In general, the spectrum of the output Vo(x,y,z) consists of the sum
of all the frequencies contained in x, y, and z pius harmonics of these fre-
quencies and frequencies resuliing from various cross-products of x, y, and z.
The equivalent gain ﬁx is that value of Kx (possibly complex) which gives a
minimum value of R(x,y,z} in the RMS sense as Kx is allowed to vary. The
other equivalert gains ﬁy and I?z are found independently in the same manner.
Of course, if only the equivalent gain to one input component (primary input
component) is desired, as is the case in this study, it is not necessary to cal-
culate the equivalent gains for the secondary components. When the primary
input component x is a dc or sinusoidal signal it turns out that the required out-
put IEXX is simply the corresponding dc or fundamental Fourier periodic compo-
nents of Voix,y,z) at the frequency of x. Sommerville and Atherton [9] have
shown that precisely the same equivalent gain sz results when a two-stage
method of evaluation is used. The intermediate step is to define an effective
nonliner elevnent (modified nonlinear element) by considering a dc signal A0
instead of the primary signal x together with the other input components. The
function I:T (Ao) relating the average dc output as a function of A0 is defined as
the new effective nonlinear element. If the primary input component x is then
applied to the new effective nonlinear element ﬁ, the signal I‘{\xx will appear at
the output. This concept of the modified nonlinear element gives the engineer a
very helpful physica! insight into the mechanism cf '"signa: stabilization" or
equivalent linearization via high frequency signal injection [33]. When the
nimber of inputs is reduced to two, the equivalent gains [2 are called DIDF's.
As mertionad earlier, when the input consists of 4 sum of sinusoidal
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components, an equivalent gain or DIDF may be defined with respect to each
component in the input. If there are only two components, both of which are
sinusoidal, then the resulting equivalent gains have been callea [36] TSIDF's.
Although the equivalent gains of Sommerville and Atherton were defined and .
formulated to include stochastic components in the input signals, their formu-
lation, as cited in thisreport, will be restricted to inputs in which the secon-
dary components are deterministic periodic signals. Gelb and Vander

Velde 136] have discussed such a formulation for the ".‘SID.F. Suppose the two
sinusoidal components of the input are given by B sin 3t and A sin wt, where
B/w is an irrational number. Then the equivalent gain or TSIDF with respect

to the component A sin wt becomes

2T 2T

5 1

K(A,B) = mf sin wt dwt [ N(A sin wt + B sin ft)dgt . (2.3)
o o

A similar expression defines 12( B, 2) with respect to the component
B sin ft. It should be pointed out that Equation (2.3) holds only for odd,
single valued, nonlinear elements. As remarked earlier, the derivation of
I%(A ,B) may be carried out in a two-stage process by first defining a modified
nonlinear element ﬁ(Ao, B) for the case in which the input consists of the sum
of a dc signal Ao and a sinusoid B sin ft. The characteristic function of the

modified nonlinear element then becomes
N(AO.B} = g({ N(Ao + B sin Et)dﬁt : (2.4)

and the TSIDF is given by
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K(A,B) = —- [ N(Asinw, B) sin ot dot . (2.5
0

This same two-stage process will be used in this thesis except that the
secondary signal is not restricted to be sinusoidal. Oldenburger and

Boyer [10] have outlinred a semi-intuitive procedure for calculating the

TSIDF which closely parallels the modified nonlinear element method proposed

by Sommerville and Atherton. In the outline of their inethod, Oidenburger and

Boyer emphasize the concepts which underlie the experimental measurement
of the modified nonlinear element and the TSIDF.

The double Fourier Series expansion method given by Gelb and
Vander Velde [18] and credited to Bennett [12] was mentioned in Chapter 1.
The TSIDF expression given by this method is exactly that of Equation (2. 3)
which results from the modified nonlinear element method and ill not be
discussed further.

The modified nonlinear element method given by Equations {2.3),
(2.4), and (2.5) will be devrived in section 2.6 of this chapter by an approach
which differs from the random noise approach used by Sommerville and

Atherton [9] or the intuitive approach used by Oldenburger and Boyer [10].

2.3 Power Series Method (TSIDF)

The power series method of obtaining the TSIDF mentioned in
Chapter I is valid for odd nonlinear elements when the frequency ratio of the
input components is irrational. This method is the result of expanding

IE(A,B) in a Taylor series about B = 0. Gelb and Vander Velde [18] have

18

KT 9

bdag

PRI L

W

T NIV 4R




[
¢

i

K T A YO A VT T AR e

shown that, provided ihe necessary derivatives exist, the TSIDF may be

written as
K(A,B) = ), —————V (A) 5 A:>B , (2.6)
p=0 (2) P(p)* P

where ‘(p(A} is found by the recursive equation

d?v_(A) . AV _(A)
vV A)y=—P .3_7p (2.7)
p+1 dA2 A dA
with the first term being,
VO(A) = K(A) . {2.8)
the ordirary DF. Likewise,
- \'\ A
K(A,B) = /, P WI(B) ; A< B , {(2.9)
p=0 2 Ppt(p + 1)
where
d’w (B} dW (B)
W {B) =__E__+_1_L_ (2.10)
p+1 de B dB
with the first term being found by the relation
W (B) = K(B) + & K (B) (2.11)
0 2 dB )

The function K(B) is the ordinary DF, when B sin gt is the input sinusoid. The
power series method is easy to apply and is very useful when closed form

solutions for the TSIDF cannot be found.

2.4 Methods of Stochastic Processes

Many authors [9,11,15,16,20,22,24,27,28,2%,31,37] have used the
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math2matics of random functiouns to formulate and derive equivalent gains and
DIDF's. Some of these studies differ in the method of approach but all involve
the same fundamental ideas. Gibson and Sridhar [11] used this approsch to
derive an exact DIDF for single valued nounlinear elements with an input con-
sisting of two sine wave components (TSIDF). Mahalarabis and Nath [37]
proposed a more direct approach to calculating the TSIDF via the techniques
of random process theory.

The TSIDF for single valued nounlinear elements was shown by Gibson

and Sridhar {11] and Gelb and Vander Velde [18] to be

K(A,B) =F—2Ly(ju)Jo(Bu)J1(Au)du , (2.12)
where
y(ju) =f y(x) exp[-jux]dx (2.13)
-0

is the Fourier Integral Transform of the nonlinear element output y(x) with x

as the input. The functions Jy(Bua) and J;(Au) are Bessel functions of order

zero and one respectively.

2.5 Methods of Determining the DIGF for Multivalued
Nounlinear Elements

As already discussed in Chapter I, relatively few results have been
published on effective methods of obtaining the minimuin RMS error DIDF for
multivalued nonlinear elements. One possible exception is the application
{16,30,33! of the modified nonlinear element concept, which theoretically

applies [16] to the multivalued nounlinear element case only as n or 1/n
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approaches infinity. It is plausible that the DIDF obtained by this approach is

accurate enough for practical purposes when 1 << n << ©, However, to the
author's knowledge, no previously published work has dealt with the
inaccuracies involved in this finite case (1 << n << =) or with the question
of possible ranges of finite n for which the method is accurate enough for
practical purposes. In respect to the application of the modified nonlinear
element method to multivalued nonlinear elements, Cook [30] has suggested a
method of keeping track of the phase. A new approach to the question of find-
ing the DIDF for multivalued nonlinear elements is offered in the foilowir~
section. This approach may be useful in determining the exact DIDF for

multivalued nonlinear elements with deterministic inputs.

2.6 A New Average DIDF Method for Deterministic Inputs

Consider the generai TSIDF given by Equation (2.1) and let n be
restricted to be an irrational number. This is the case considered [9,10,11,
16,25,26,27,31,32,33,36,37] where the random input approach was used to
derive the TSIDF for deterministic inputs. In such applications, the random
input approach merely provides a convenient method for averaging out the
relative phase angles ¢ and ¥. This is easily understood when one considers
the very practical problem of trying to experimentally determine the TSIDF.
When n is irrational, the phase angles ¢ and { lose their phy8ical importance
and it becomes impractical to even include them in the TSIDF. Consider the
accurate experimental setup to measure the TSIDF given by Equation (2.1).

It is obvious that if the two signal generators which generate the components

21
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A sin (wt + ¢) and B(nwt + ¢) are allowed to run concinuously, a different

value of K will be observed with each succeeding 27 interval of the primary
input component A sin (wt + ¢). What is actually desired is the average value
of 12 as the observation time increases without bound. Therefore, this
"average TSIDF* will not include ¢ and ¢ as parameters. In other words, the

actual TSIDF which is desired is given by

2p~

-~ 3 1

K(A,B,n) = lim fi\'(A sin wt + B sin nwt)sin ot dwt (2, 14)
p—= prA 5

where p is an integer.
Equation (2. 14) is equivalent, in the measurement problem, to

evaluating

27

- 1

K(A,B,n, ¢,¢) :}—IN[A sin (wt + ¢) + B sin (nwt + ¢)]sin (wt + ¥) dut
o

(2.13)
for all possiblz combinations of "phase’ or zero crossings of the two input
coemponents and averaging these values of 12 (A,B,n,0,7).

Thus, there is ancther way to calculate the TSIDF. Let one of the
sinusoidal input components contain a relative phase angle ¢, then averagze the
resulting set of "instantaneous DIDF's" as ¢ ranges over 27. The above
arguments are more rigorously developed in the ensuing discussion. Define

an equivalent gain gain K, and KB for each input component A sin wt and

A

B sin (nwt + ¢) respectively. The "linearized'" outpnt is given by the
expression KA A sin wt + KB B sin (newt + ¢). However, K/-\ and KB are

complex functions of A, B, and n, in general, and can therefore be expressed

in the form
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The RMS value of the difference between the actual output and the linearized

output over all time is

/ lim 1 Cop
= — {N[A sin wt + B sin (nwt + ¢)]
p—~= 2p7 -

R
- K Asingt - K . Acospt
ar ai

= i wt +
Kbr B sin (nw ()]

1
- K. Bcos (mwt + ¢)}2dwt> L , (2.17)

where p is an integer. Since n is restricted to be an irrational number,

Equation (2.17) may be written in the fcllowing double integral form,

_ 11 2r1r 2
R = <§ 2—‘_‘-({ d¢({{N[Asinwt + B sin (nwt + ¢) ]

K Asinept - K, Acos ot -
ar ai

- I sin Wi +
o Bsin (ot + @)

1
K,; B cos (nwt + ¢)}9dwt> /2 . (2.18)

The »alue of the real part of K A (minimum RMS TSIDF) whick minimizes K is

characterized by the condition

= =0 . i2.19)
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The indicated differentiation may be taken under the integral signs since the
integrand is single valued, continuous, and differentiable with respect to the
variable Kar even though N(e) may be discontinuous and multivalued. This

value of K, defined as K , is found to be
ar ar

" 1 27 2rm

K, .(A,B,n) =557 Of do Of N[A sin @t + B sin (nwt + ¢)] sin wt dwt
(2.20)

Likewise the imaginary part of the DIDF is found to be
. 1 27 7.'
K (A,B,n) = mf dé [N[A sinwt + B sin (nwt + ¢)Jcos wt dwt .
0] 0]

(2.21)

The independent nature of the two input components (n-irrational) is empha-
sized by changing the variables wt and nwt to ¢; and 6,, respectively.

If N(e} is now restricted to be single valued, the imaginary part Kai
of the TSIDF goes to zero and 0, does not appear in the answer for Kar
Therefore, Equation (2.20) may be reduced to the foilowing form

2T 2T
omA Of d‘:”of N(A sin ¢; + B sin ¢)sin 0; ¢o; . (2.22)

KA(A,B) =

The role of ¢ and #, may also be interchanged to give a cimilar expression for

the DiDF,
. 1 2 Z2rm
R, (A,B) =5 [ do, [ N(A sin g; + B sin 6,)sin 9, dg; . (2.25)
) )
Since the integrand is single valued with at most a finite number of finite

discontinuities, the order of integration may be interchanged. That is,

Equation (2.23) may be written as
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K, (A,B) = mc{sin 0 d810f N(A sin 6, + B sin 0,)de, .(2.24,

Equation (2.24) is equivalent to (2.3) which in turn is a result of the modified

N R R

nonlinear element method. Eaquation (2.24) is also the form of the TSIDF

given by Gelb and Vander Velde [36]. The two-step evaluation of Equation

(2.24) may be carried out as indicated in Equations (2.4) and (2.5).

AR

Although the order of integration is not important, the integral forms resulting

from Equation (2.23) may be easier to integrate than those of Equation (2'. 24),

or vice versa.

Although the minimum RMS TSIDF was derived above under the

assurption that the secondary component in the input was a sine wave,
B sin (nwt + ¢), this restriction is not necessary. In fact, any periodic i
secondary signal o(pt) could have been chosen without affecting the form of 5
the answer. This resuit will be used in Chapter V to show how the DIDF is

affected by changing the wave shape of the yeriodic signal o(pt). Equations

(2.22) through (2.24) also emphasize that the TSIDF of single valued non-

linesr elements is independent of the frequency ratio n. It appears that such

a simplification camnot be made when considering multivalued nonlinear

elements. This latter statement is not in agreement wifh the assertion

recently made by Mahalanabis and Oldenburger{31}. Further discussion of

this point is made in Chapter IV where the DIDF for the relay with hysteresis

is found by use of Equations (2.20) and (2.21) and is compared with the

published results of Mahalanabis and Oldenburger.
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Since the frequency ratio n dces not enter into the TSIDF for single
valued nonlinear elements, Equation (2.20) suggests an alternative approach to
the calculation of the TSIDF. For instance, when n is very close to one, the

DIDF may be written in the form

27 27

K(A,B) =5 [ do [ N[Dsin (wt + ) ]sinwtdat , (2.25)
(o] 0
where

D = D(A,B, o) = NA? + B® + 2AB cos ¢ (2.26)
sin~! - Bsin ¢ ; Bcecosod + A =0

\'\I A* + B + 2ABcos ¢

b = (2.27)
n-sin"( o ¢ ; Bcosgp +A =0
NA? + B? + 2AB cos ¢

-

Now evaluate K(A, B) by a two-stage process, similar to that used in the

modified nonlinear element concept, where

1 e
g(A, B, ¢) =-57N[D sin (wt + ¢)]sin wt dwt (2.28)
0]
and
PN 1 %TT
K(A.B) :—Z?é g(A,B,¢)do . (2.29)

The function g(A, B, ¢) simply defines a special case of the DIDF of
West, Douce, and Livesly where n = 1. Equation (2,29) shows that IE(A, B) is
the average of g(A,B, ¢) as ¢ ranges over 27. This implies that the average
value of the DIDF of West, Douce, and Livesly as ¢ ranges over (0, 27) is the

same regardless of the value of n. The function g(A, B, ¢) has the appearance
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of the conventional DF with the additional paramater 3. It will be shown velow

that the computation of g{A,B, ¢) requires the same effort as ihe computation

of the DF. It may be considerably more difficult to perform the integration

indicated in Equation (2.2%) than that in Equation (2.%8). Since the charac-
teristic iN{e) is single valued, the phase ¢ is preserved through the nonlinear

operation indicated in Equation (2.28). Therefore, Equation (2.28) may be

rewritien as

™
tH

g(8,B,8) =< [ N(D sin ut)sin ot dut . (2.30)

I 5

Substituting Equation (2.27) in Equation (2.30) gives

27
g 1 . .
(A, B, ) = A+ Bcos 9 — [ N(D sin wt)sin ot dot
NA?+ B+ 2ABcos ¢ " 0 (2.31)
and

R __sz” (1 + B/A ccs ¢)do

) - 7._2

27" 5 AL+ B + 2AB cos &
27

SRS,

N(WA? + B + 2AB cos ¢ - sin wt)sin wt dot . (2.32)

It is interesting to note that this formulation leads to a general expression,
Equation (2.32), which has the appearance of an elliptic integral. However, it
appears that this integral may be difficult or impossible to reduce to one of the
standard or tabulated elliptic integrals. The functional cos [{ (A, B, ¢)] does
not depend upon the nonlinear element and is symmetricai about ¢ = 7. In fact
g(A,B, ¢) is symmetrical about ¢ = 7 as well. In some cases approximate

algebraic solutions may be desired rather than graphs of the TSIDF. If
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trapezoidal integration or other approximate techniques are used, accuracy
sufficient for practical application is usually achievable with very few terms.
In the modified nonlinear element method, the function ICI (Ao’ B) is
oridinarly not difficult to obtain. The main task consists of determining the
fundamental component of the output when the primary comporent of the input

is operated upon by the function N (Ao’ B) .

Example: DIDF of Relay

In order to demonstrate tle utility of the average DIDF method, con-

sider the DIDF of the perfect relay. The relay is described by the equation:

M; e> 0

y = M sgn(e) = {_M, e <0 (2.33)

where, for the present case, e = A sin wt + B sin 8t. Equation (2,30} is

simply the conventional DF times cos ¢ with D sin wt as the input. Thus,

27T
. . 4M
- = = 2= (
DF ”A({Msg'n(D sin wt) sin ot dot = —- (2.34)
and
aM 1+
g(A,B,¢) = — /8 @ ¢ . (2.35)
T \WA? + B? + 2AB cos ¢

The second integration indicated by Equation (2.29) gives

1+ B/A cos 9

do . (2.36)
NA? + B2 + 2AB cos ¢

A 4M T
KA,B) ==7 [
0
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This integral may be evaluated [38].

- 8M 1 Bk-2\_ - B 1l .
K(A,B) = T AT H [(1 +—KT->F(I{) + Z'A'li? E(k)] , (2.37)

where F(l'{) is the complete elliptic integral of the first kind and E(f<) is the

complete elliptic integral of the second kind. The modulus k is given by

2N B/A

= (2.38)

k
Equation (2.37) is valid for all A and B. However, a modulus transformation

may be applied [39] whereby

_2E(k) - (1 - K¥)F(k)

E(k) = — (2.39)
F(k) = (1+KkFk , (2.40)
when
k = B/A ; B <A
k=A/B: B>A . (2.41)

When Equations (2.38) through (2.41) are substituted in Equation (2.37), the

following expressions for the DIDF of the perfect relay results:

. ?T_I;{_ E(B/A); B < A
K(A,B)
B A?
%X[E(A/B) - ( -;‘)K(A/B)] ;7 A< B .(2.42)

Equation (2.42) coincides exactly with the expressions ohtained by Gibson and
Sridhar [11] and Mahalanabis and Nath [37], who used essentially different

methods of calculations.

When the secondary input component isnonsinusoidal, a simplified form of

the average DIDF method comparable to that given in Equation (2.32) cannot be

29
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found. However, either of the expressions given in Equations (2.23) and
(2.24) may be used when N (e) is single valued. Expressions similar to
Equations (2.20) and (2.21) are used when N (e) is a muliivalued function. In
order to include a more general periodic secondary signal ¢(5t), Equation
(2.23) can be written as follows:

- 1
KiA:c.- )] === [ do, [NX[Asino, « o(0y) sin 0, do; . (2.43)
0

~

The evaluation of Equation (£.43) may be carried out in two steps, following

the modified nonlinear element approach, to give

-~

3 1
N[A ;afo,)J =
(o] - o

Qo
=

I\'[Ao - cr(ﬁz)] dn, (2. 44)

K[A; 0000} ] = — [ N[A sin 0y 0 (0,)1da; . (2.45)
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CHAPTER 1

DEFINITION AND SGLUTION OF AN INVERSE DIDF PROBLEM
FOR A PARTICULAR CLASS OF NONLINEAR ELEMENTS

Although a large portion of this report is devoted to the analysis of the
output of a nonlinear element when the input coxutains a secondary signal of
various waveforms, the motivation for this study was provided by the somewhat
more difficult synthesis prcblem of finding the secondary signal ¢(Bt) which will
produce a prescribed modified nouniinear function I\::(A, B) for a given nonlinear
function N(e). It is assumed that the given nonlinear element is an inherent
part of a system and cannot itself be changed or replaced. Perhaps the first
logical step in a synthesis procedure is to define the desired DIDF
}E = }E[A; o (Bt) ] where the primary component of the input signal is a sine
wave. If one then attempts to work backward, using the modified nonlinear
elemeif concept, the second step consists of finding the equivalent nonlinear
elementlg = l\}[AO; g([}t)] which gives the desired DIDF. This, or course,
is exactly analogous to the inverse describing function problem posed and
largely solved by Gibson, H:ll, Ibrahim, and di Tada [34]. Even though a

method exists wnich may be used to solve this second step, one might proceed

alternatively by first definiag the desired N [AO; o Bt)] ratlier than the desired
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1‘\:[A; g(Bt) ]. This latter problem is important in its own right and, in most
practical situations, might just as well be the starting point. A logical
extension of the ideas of the inverse DF prohlem mentioned above would lead
one to define the inverse DIDF problem as one of finding a nonlinear element
which corresponds to 2 given TSIDF. However, it is felt that the inverse
IDT definition given here is probably a more practical one. The inverse
DIDF problem to be considered here may be precisely stated as follows:

The Inverse DIDF Problem

Given: A time invariant nonlinear element with characteristic

N{e) and the desired modified nonlinear characteristic

N* = &[Ao; U(Bt)]

F¥ind: The periodic secondary signal ¢ (5t) which will produce

the modified nonlinear characteristic N,

The diagram of Figure 3.1 shows the essential elements and signals required
in the development.

In the present discussion, only odd, singie valued nonlinear elements
whose characteristic is not a furction of frequency will be considered. In
order to conveniently choose and restrict the class of sécondary signals which
should be considered, the following observation on integrals of functions is
made: Let f(t) be a given function of time, AO be an arbitrary constant, and
N(e) be a time invariant single valued nonlinear function. In addition, let

jth[Ao + f(t)] dt = X < o . (3.1

(o)
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(b) Equivalent Representation

Figure 3.1. Diagram Illustrating the Inverse DIDF Problem

Then there exists a function g(t) such that

dg(t) - , . <t <
20 0=t=t (3.2)
and
ty
fN[AO + g(t)]dt =X . (3.3)
0O

Therefore, following the definition of the modified nonlinear element given by
Equation (2.44), one may consider only secondary components ¢(pt) belonging

to the class ¥ where
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TRRIPIRIT

0 O e et b e B

o(gt) = —o (-5t)
E: o(r/2 + t) = o(x/2 - Bt)

do(3t) . .
—_— : = t = —;/2
it 0 ; 0 =5 7
This restriction does not eliminate from consideration any modified charac-

teristic function N [AO; U(Bt)] which might otherwise be considered.

The restriction to the class = greatly simplifies the search for a solu-
tion o* (Bt) and does not eliminate any useful solutions. It is obvious that a
secondary signal can alter the modified nonlinear characteristic orly over
certain regions. Such aregion in the I:*[Ao;o(ﬁt):l versus A0 plane might be

as shown in Figure 3.2, In addition there will be limits on the derivatives of

m -~
S i s . . . d N
N in tkis region R. That is, the values of the derivatives - cannot be
1
dA
o

arbitrarily specified. To define the region R and the iimits on the derivatives

m -~
d T
m
dA
)
task. However, with the exception of specifying the regioa R a priori, this is

which may be achieved by a secondary component in the input is a large

what is required in the inverse DIDF problem. Curves showing the DIDF's of
nonlinear elements for several specific secondary signal waveforms should
lend some insight into what may be expected from the inverse problem. A

catalog of several such DIDF's is given in Chapter IV.
Consider the class of nonlinear elements defined by the equation
1n
N(e) = Ke sgn (e) (3.5)

where m is a non-negative even integer. Let the class of desired equivalent

nonlinear elements, N*, be defined by the relation
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Figure 3.2. Region over Which I;:[AO; G(Bt)]
Mayv Be Varied by Changing o (jt)
e Y . _ | n
N¥ = N [Ao,o*(ﬁt)] =k A" sgn (AO> . (3.6)

This equation holds for some as yet undefined region about the origin A0 = 0.
The equation for the equivalent nonlinear element with any secondary signal and

a single valued nonlinear eiement is given by the functional

I:’[AO; o(,@t)] =2—1WfN[AO ¥ o(Bt)] et . (3.7)

The class of problems under consideration can be solved with some degree of
success in a very straightforward manner by defining only the mth derivative
of N*. Of the nonlinear elements described by Equation (3.5), only the
perfect relay and absquare will be considered. However, the method proposed
here may be carried further witnout defining the nonlinear element to be con-
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